A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes
نویسندگان
چکیده
We present a construction of a family of continuous-time ARMA processes based on p iterations of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The construction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-Uhlenbeck processes all driven by the same Lévy process. This provides a straightforward computation of covariances, a state-space model representation and methods for estimating parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be an ARMA(p, p− 1) process. We propose methods for estimating the parameters of the iterated Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy process, and show simulations and applications to real data. MSC: 60G10, 62M10, 62M99 60M99.
منابع مشابه
Ornstein–Uhlenbeck related models driven by Lévy processes
Recently, there has been increasing interest in continuous-time stochastic models with jumps, a class of models which has applications in the fields of finance, insurance mathematics and storage theory, to name just a few. In this chapter we shall collect known results about a prominent class of these continuoustime models with jumps, namely the class of Lévy-driven Ornstein–Uhlenbeck processes...
متن کاملEvy Driven and Fractionally Integrated Arma Processes with Continuous Time Parameter
The de nition and properties of L evy driven CARMA continuous time ARMA processes are re viewed Gaussian CARMA processes are special cases in which the driving L evy process is Brownian motion The use of more general L evy processes permits the speci cation of CARMA processes with a wide variety of marginal distributions which may be asymmetric and heavier tailed than Gaus sian Non negative CAR...
متن کاملModeling Stationary Data by a Class of Generalized Ornstein-Uhlenbeck Processes: The Gaussian Case
We analyze in this work the effect of the iterated application of the linear operator that maps a Wiener process onto an OrnsteinUhlenbeck process. The processes obtained after p iterations are called Ornstein-Uhlenbeck processes of order p (denoted OU(p)). Technically our composition of operators is easy to manipulate and its parameters can be computed efficiently because, as we show, in most ...
متن کاملEvy - Driven and Fractionally Integrated Armaprocesses with Continuous Time Parameterpeter
The deenition and properties of L evy-driven CARMA (continuous-time ARMA) processes are reviewed. Gaussian CARMA processes are special cases in which the driving L evy process is Brownian motion. The use of more general L evy processes permits the speciication of CARMA processes with a wide variety of marginal distributions which may be asymmetric and heavier tailed than Gaus-sian. Non-negative...
متن کاملExtremes of Continuous-Time Processes
In this paper we present a review on the extremal behavior of stationary continuous-time processes with emphasis on generalized Ornstein-Uhlenbeck processes. We restrict our attention to heavy-tailed models like heavy-tailed Ornstein-Uhlenbeck processes or continuous-time GARCH processes. The survey includes the tail behavior of the stationary distribution, the tail behavior of the sample maxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016